3.3.61 \(\int \frac {(a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [261]

Optimal. Leaf size=171 \[ \frac {a^{3/2} (8 A+7 C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^2 (8 A-5 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {3 a C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d} \]

[Out]

1/4*a^(3/2)*(8*A+7*C)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+1/2*C*(a+a*sec(d*x+c))^(3/2)*sin(d*
x+c)*sec(d*x+c)^(1/2)/d+1/4*a^2*(8*A-5*C)*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)+3/4*a*C*sin(d*x
+c)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 171, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.135, Rules used = {4174, 4103, 4100, 3886, 221} \begin {gather*} \frac {a^{3/2} (8 A+7 C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{4 d}+\frac {a^2 (8 A-5 C) \sin (c+d x) \sqrt {\sec (c+d x)}}{4 d \sqrt {a \sec (c+d x)+a}}+\frac {3 a C \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{4 d}+\frac {C \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

(a^(3/2)*(8*A + 7*C)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(4*d) + (a^2*(8*A - 5*C)*Sqrt[S
ec[c + d*x]]*Sin[c + d*x])/(4*d*Sqrt[a + a*Sec[c + d*x]]) + (3*a*C*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]
*Sin[c + d*x])/(4*d) + (C*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(2*d)

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 3886

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(a/(b
*f))*Sqrt[a*(d/b)], Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Free
Q[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4103

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Dist[1/(d*(m + n)), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*d
*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]

Rule 4174

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1
))), x] + Dist[1/(b*(m + n + 1)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n +
 a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(
-1)] &&  !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]

Rubi steps

\begin {align*} \int \frac {(a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx &=\frac {C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}+\frac {\int \frac {(a+a \sec (c+d x))^{3/2} \left (\frac {1}{2} a (4 A-C)+\frac {3}{2} a C \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{2 a}\\ &=\frac {3 a C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}+\frac {\int \frac {\sqrt {a+a \sec (c+d x)} \left (\frac {1}{4} a^2 (8 A-5 C)+\frac {1}{4} a^2 (8 A+7 C) \sec (c+d x)\right )}{\sqrt {\sec (c+d x)}} \, dx}{2 a}\\ &=\frac {a^2 (8 A-5 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {3 a C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}+\frac {1}{8} (a (8 A+7 C)) \int \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a^2 (8 A-5 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {3 a C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}-\frac {(a (8 A+7 C)) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}\\ &=\frac {a^{3/2} (8 A+7 C) \sinh ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^2 (8 A-5 C) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {3 a C \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {C \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.72, size = 209, normalized size = 1.22 \begin {gather*} \frac {(a (1+\sec (c+d x)))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \left (\frac {(4 A+2 C+7 C \cos (c+d x)+4 A \cos (2 (c+d x))) \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\cos (c+d x)}}}-(8 A+7 C) \cos ^2(c+d x) \cot (c+d x) \left (\log (1+\sec (c+d x))-\log \left (\sqrt {\sec (c+d x)}+\sec ^{\frac {3}{2}}(c+d x)+\sqrt {1+\sec (c+d x)} \sqrt {\tan ^2(c+d x)}\right )\right ) \sqrt {\tan ^2(c+d x)}\right )}{2 d (A+2 C+A \cos (2 (c+d x))) (1+\sec (c+d x))^{3/2}} \end {gather*}

Warning: Unable to verify antiderivative.

[In]

Integrate[((a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2))/Sqrt[Sec[c + d*x]],x]

[Out]

((a*(1 + Sec[c + d*x]))^(3/2)*(A + C*Sec[c + d*x]^2)*(((4*A + 2*C + 7*C*Cos[c + d*x] + 4*A*Cos[2*(c + d*x)])*T
an[(c + d*x)/2])/Sqrt[(1 + Cos[c + d*x])^(-1)] - (8*A + 7*C)*Cos[c + d*x]^2*Cot[c + d*x]*(Log[1 + Sec[c + d*x]
] - Log[Sqrt[Sec[c + d*x]] + Sec[c + d*x]^(3/2) + Sqrt[1 + Sec[c + d*x]]*Sqrt[Tan[c + d*x]^2]])*Sqrt[Tan[c + d
*x]^2]))/(2*d*(A + 2*C + A*Cos[2*(c + d*x)])*(1 + Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(374\) vs. \(2(145)=290\).
time = 23.62, size = 375, normalized size = 2.19

method result size
default \(-\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (-8 A \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}+8 A \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}-7 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )-\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}+7 C \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (1+\cos \left (d x +c \right )+\sin \left (d x +c \right )\right ) \sqrt {2}}{4}\right ) \sqrt {2}+32 A \left (\cos ^{3}\left (d x +c \right )\right )-32 A \left (\cos ^{2}\left (d x +c \right )\right )+28 C \left (\cos ^{2}\left (d x +c \right )\right )-20 C \cos \left (d x +c \right )-8 C \right ) \sqrt {\frac {1}{\cos \left (d x +c \right )}}\, a}{16 d \sin \left (d x +c \right ) \cos \left (d x +c \right )}\) \(375\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/16/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(-8*A*cos(d*x+c)^2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4
*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))*2^(1/2)+8*A*cos(d*x+c)^2*sin(d*x+c)*(-2/(1+cos(d
*x+c)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)+sin(d*x+c))*2^(1/2))*2^(1/2)-7*C*cos(d*x+c)^2
*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+c)-sin(d*x+c))*2^(1/2))*
2^(1/2)+7*C*cos(d*x+c)^2*sin(d*x+c)*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/4*(-2/(1+cos(d*x+c)))^(1/2)*(1+cos(d*x+
c)+sin(d*x+c))*2^(1/2))*2^(1/2)+32*A*cos(d*x+c)^3-32*A*cos(d*x+c)^2+28*C*cos(d*x+c)^2-20*C*cos(d*x+c)-8*C)*(1/
cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)*a

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 2520 vs. \(2 (145) = 290\).
time = 0.70, size = 2520, normalized size = 14.74 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/16*(4*sqrt(2)*(sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1
/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^
2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*a*log(2*cos(1/2*d*x + 1/2*c
)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2
)*a*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1
/2*d*x + 1/2*c) + 2) + 8*a*sin(1/2*d*x + 1/2*c))*A*sqrt(a) - (56*sqrt(2)*a*cos(7/3*arctan2(sin(3/2*d*x + 3/2*c
), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 24*sqrt(2)*a*cos(5/3*
arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c
))) - 12*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 28*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c))) - 4*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) + 7*sqrt(2)*a*sin(7/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
3/2*c))) - 3*sqrt(2)*a*sin(5/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*sqrt(2)*a*sin(1/3*arct
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))
 - 8*(3*sqrt(2)*a*sin(3/2*d*x + 3/2*c) - 7*sqrt(2)*a*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c
))))*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arc
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*
c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/
3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x
 + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(
3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2
*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 7*(a*cos(8/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))
^2 + a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*
c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*sin(4/3*arctan2(
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/
2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3
/2*c), cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*si
n(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c),
 cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 7*(a*c
os(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(
3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*sin(8/3*arctan2(
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*
a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c)
, cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 4*a*cos(4/3*arcta
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x +
 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*cos(1/3*arctan2(sin
(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*
c))) + 2) + 7*(a*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*a*cos(4/3*arctan2(sin(3/2*
d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 4*
a*sin(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d
*x + 3/2*c))) + 4*a*sin(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*(2*a*cos(4/3*arctan2(si
n(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*cos(8/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) +
 4*a*cos(4/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + a)*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2
*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt(2)*c
os(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*...

________________________________________________________________________________________

Fricas [A]
time = 2.70, size = 424, normalized size = 2.48 \begin {gather*} \left [\frac {{\left ({\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2} + {\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (8 \, A a \cos \left (d x + c\right )^{2} + 7 \, C a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {{\left ({\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )^{2} + {\left (8 \, A + 7 \, C\right )} a \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) + \frac {2 \, {\left (8 \, A a \cos \left (d x + c\right )^{2} + 7 \, C a \cos \left (d x + c\right ) + 2 \, C a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[1/16*(((8*A + 7*C)*a*cos(d*x + c)^2 + (8*A + 7*C)*a*cos(d*x + c))*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x
 + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqr
t(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(8*A*a*cos(d*x + c)^2 + 7*C*a*cos(d*x + c) + 2*C
*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c
)), 1/8*(((8*A + 7*C)*a*cos(d*x + c)^2 + (8*A + 7*C)*a*cos(d*x + c))*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*
x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) - 2*a)) + 2*(8*A*
a*cos(d*x + c)^2 + 7*C*a*cos(d*x + c) + 2*C*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d
*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: SystemError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2)/sec(d*x+c)**(1/2),x)

[Out]

Exception raised: SystemError >> excessive stack use: stack is 3006 deep

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2)/sec(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + A)*(a*sec(d*x + c) + a)^(3/2)/sqrt(sec(d*x + c)), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(1/2),x)

[Out]

int(((A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2))/(1/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________